Topic 2 Equivalent resistance, voltage-current divider rule, delta-star transformations

Connections

Individual resistors can be connected together in either a series connection, a parallel connection or combinations of both series and parallel, to produce more complex resistor networks whose equivalent resistance is the mathematical combination of the individual resistors connected together.

Parallel Connection

These points are electrically common $\boldsymbol{\Sigma}_{\textrm{B}_1}$ $\mathsf{S}_{\,\mathrm{R}_2}$ \blacktriangleright R₃ $\mathsf{S} \, \mathsf{R}_4$ These points are electrically common

In a series circuit, all components are connected end-to-end, forming a single path for current flow.

In a parallel circuit, all components are connected across each other, forming exactly two sets of electrically common points.

Series Connection

Equivalent resistance, $R_T = R_1 + R_2 + R_3$+ R_n

Example:

Equivalent resistance for the series arrangement (fig. a),

 $R_T = R_1 + R_2 + R_3$ $R_T = 15 + 20 + 15 = 50 \Omega$ $I = E/R_T = 14/50 = 0.28 A$ (applying Ohm's Law) $V_1 = IR_1 = 0.28 \times 15 = 4.2 V$ (applying Ohm's Law) $V_2 = IR_2 = 0.28 \times 20 = 5.6 V$ (applying Ohm's Law) $V_3 = IR_3 = 0.28 \times 15 = 4.2 V$ (applying Ohm's Law)

Example:

Equivalent resistance for the parallel arrangement (fig. b),

$$
\frac{1}{R_T} = \frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}
$$

$$
\frac{1}{R_T} = \frac{1}{5} + \frac{1}{3} + \frac{1}{6} = \frac{6 + 10 + 5}{30} = \frac{21}{30}
$$

$$
R_T = \frac{30}{21} = 1.43 \Omega
$$

$$
I = E/R_T = 20/1.43 = 14 A
$$

Figure: (b)

Series-Parallel Connection

Example:

Equivalent resistance for the series - parallel arrangement (fig. c),

$$
R_T = R_1 + R_2 \parallel R_3 = 4\Omega + 2\Omega \parallel 1\Omega = 4 + 0.67 = 4.67\Omega
$$

Problem 1: Calculate the equivalent resistance of the following circuit shown below,

Problem 2: Calculate the equivalent resistance of the following circuit shown below,

Voltage-Current divider rule

VOLTAGE DIVIDER RULE:

In fig. (a) ,

$$
V_1 = \frac{E \times R_1}{R_1 + R_2 + R_3} = \frac{14 \times 15}{15 + 20 + 15} = \frac{210}{50} = 4.2V
$$

$$
V_2 = \frac{E \times R_2}{R_1 + R_2 + R_3} = \frac{14 \times 20}{15 + 20 + 15} = \frac{280}{50} = 5.6V
$$

$$
V_3 = \frac{E \times R_3}{R_1 + R_2 + R_3} = \frac{14 \times 15}{15 + 20 + 15} = \frac{210}{50} = 4.2V
$$

CURRENT DIVIDER RULE:

In fig. (b) ,

$$
R_T = R_1 \| R_2 = 5 \| 7 = 2.92 \Omega
$$

\n
$$
\therefore I = \frac{E}{R_T} = \frac{20}{2.92} = 6.85 A
$$

\nSo,
\n
$$
I_1 = \frac{I \times R_2}{R_1 + R_2} = \frac{6.85 \times 7}{5 + 7} = \frac{47.95}{12} = 4 A
$$

\n
$$
I_2 = \frac{I \times R_1}{R_1 + R_2} = \frac{6.85 \times 5}{5 + 7} = \frac{34.25}{12} = 2.85 A
$$

Delta-Star transformations

$$
R_1 = \frac{R_b R_c}{R_a + R_b + R_c}
$$

$$
R_2 = \frac{R_a R_c}{R_a + R_b + R_c}
$$

$$
R_3 = \frac{R_a R_b}{R_a + R_b + R_c}
$$

